Capturing Spatial Influence in Wind Prediction With a Graph Convolutional Neural Network

Author:

Liu Zeyi,Ware Tony

Abstract

Nowadays, wind power is playing a significant role in power systems; it is necessary to improve the prediction accuracy, which will help make better use of wind sources. The existing neural network methods, such as recurrent neural network (RNN), have been widely used in wind prediction; however, RNN models only consider the dynamic change of temporal conditions and ignore the spatial correlation. In this work, we combine the graph convolutional neural (GCN) with the gated recurrent unit (GRU) to do prediction on simulated and real wind speed and wind power data sets. The improvements of prediction results by GCN in all wind speed experiments show its ability to capture spatial dependence and improve prediction accuracy. Although the GCN does not perform well in short-term wind power prediction as the change of wind power data is not so smooth due to the limitation of turbine operation, the results of long-term prediction still prove the performance of GCN.

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3