Both organic fertilizer and biochar applications enhanced soil nutrition but inhibited cyanobacterial community in paddy soils

Author:

Zou Xiangbo,Jiang Xinyu,Guan Jinshun,Huang Shaoqiang,Chen Chuangting,Zhou Tiancheng,Kuang Cao,Ye Ji,Liu Tong,Cheng Jiong,Chen Sanxiong,Yu Shiqin

Abstract

Cyanobacteria plays an important role in other ecological processes in paddy soils, particularly in terms of nitrogen input to the ecosystem. Organic fertilizer and biochar are common soil amendment materials used to preserve soil health in agricultural intensification background. However, the consequent increase in soil nutrition may inhibit soil cyanobacteria, therefore decreasing nitrogen fixation and changes other soil processes. To test this hypothesis, we established a 2 × 2 full factorial experiment in a paddy field in South China, which included four treatments: Ctr (control, receiving no organic fertilization or biochar addition), +OF (organic fertilizer application only), +BC (biochar application only), and +Mix (organic fertilizer and biochar applications). The soil cyanobacterial community was analyzed using metagenomics technology, and 14 soil property variables were measured. The results suggested that organic fertilizer was effective in enhancing nutrient levels, leading to a significant increase in extractable and soluble nitrogen, phosphorus, and potassium. In contrast, biochar application had a stronger effect on total soil carbon, potassium, and soil pH. However, both organic fertilizer and biochar applications induced significant decreases in overall cyanobacterial abundance and species number. Dominant cyanobacterial organisms, particularly the two most abundant genera, Leptolyngbya and Phormidium, experienced a greater decrease compared to others. Canonical correlation analyses and structural equation models indicated that organic fertilizer and biochar applications affected soil cyanobacterial community mainly through soil available nitrogen and pH. In total, the present study highlighted that both organic fertilizer and biochar applications in paddy soils notably change soil physicochemical traits, inhibiting rather than benefiting cyanobacterial microorganisms, especially the dominant ones, and potentially reducing nitrogen input. Our study reveals the impacts of oragnic fertilizer and biochar applications in paddies on soil cyanobacteria and how the consequent changes in soil properties mediate this impact, thereby enhancing our understanding of the responses of different soil microbial groups to soil improvement measures.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3