Can Low-Carbon Technological Innovation Reduce Haze Pollution?—Based on Spatial Econometric Analysis

Author:

Jin Shunlin,Wang Weidong,Qalati Sikandar Ali,Zhang Caijing,Lu Na,Zhu Guyu,Wu Jiahui

Abstract

Exploring the co-benefits of low-carbon tech-innovation in response to climate change on haze pollution is an important foundation for China’s ecological construction, and also a key path to the common goal of carbon and haze reduction. Based on the STIRPAT model and EKC hypothesis, the dynamic spatial Durbin model (SDM) is constructed to empirically analyze the co-benefits and the mechanism of low-carbon tech-innovation on haze pollution in 30 Chinese provinces from 2006 to 2018. The results show that 1) haze pollution in different regions of China shows significant temporal and spatial correlation. 2) China’s low-carbon tech-innovation brings the co-benefits of haze pollution suppression and long-term positive externalities between regions. 3) Environmental policy and industrial structure play a moderating and mediating role, respectively, the former produces the “innovation offset” effect. 4) Both types of low-carbon tech-innovation can suppress haze pollution, but gray tech-innovation shows better haze control ability and cross-regional diffusion ability. Therefore, a long-term mechanism for haze control and joint prevention and control should be established to prevent the rebound and agglomeration of haze, and balance the development of different types of low-carbon technologies to achieve coordinated control of carbon emissions and haze.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3