Reduction of nitrogen loss in runoff from sloping farmland by a ridged biochar permeable reactive barrier with vegetated filter strips

Author:

Zhang Yuhe,Gao Jianshuang,Li Qiang,Zhuang Shunyao

Abstract

IntroductionEutrophication due to nitrogen (N) loss from sloping farmland has a high risk in the Three Gorges Reservoir. Biochar and vegetated filter strips (VFS) are used to control nutrient runoff and increase soil water-holding capacity, soil nutrient retention, and crop yield. However, surface biochar application has limited ability to control N loss, especially from sloping farmland.MethodsIn this study, different widths of ridged biochar permeable reactive barrier (RB-PRB) with VFS were employed to intercept N loss in runoff from sloping farmland. Adsorption characteristics of biochar for nitrate and ammonium N were evaluated using isothermal and kinetic adsorption models before field experiments. N index values for ammonium (NH4+), nitrate (NO3), dissolved N (DTN), particulate N (PN), and total N (TN) lost through runoff were monitored from April 2019 to January 2020.ResultsNO3 and NH4+ sorption on biochar was predominantly physical adsorption with a maximum capacity of 4.51 and 4.12 mg g-1, respectively. During the research period, the dominant transportation pathway of N loss involved dissolved total N movement through subsurface flow, which accounted for 65.55% of the total loss. TN loss for CK was 1954 g·hm-2, while RB-PRB and VFS decreased N loss from sloping farmland by 36.7%. The interception efficiency of RB-PRB was highest at 0.3 m width. VFS successfully intercepted particulate N and reduced it by 32.75%. In terms of soil nutrients, the RB-PRB and VFS interventions led to a substantial 41.69% increase in the TN content of the soil at a 0.4 m width.DiscussionThe findings suggest that biochar has a favorable adsorption effect on NH4+ and NO3, an appropriate width of RB-PRB with VFS could effectively reduce nitrogen loss from sloping farmland. Simultaneously, it enhances the water and fertilizer retention capacity of sloping cropland soil; however, the long-term implications necessitate further validation.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3