Predicting groundwater level using traditional and deep machine learning algorithms

Author:

Feng Fan,Ghorbani Hamzeh,Radwan Ahmed E.

Abstract

This research aims to evaluate various traditional or deep machine learning algorithms for the prediction of groundwater level (GWL) using three key input variables specific to Izeh City in the Khuzestan province of Iran: groundwater extraction rate (E), rainfall rate (R), and river flow rate (P) (with 3 km distance). Various traditional and deep machine learning (DML) algorithms, including convolutional neural network (CNN), recurrent neural network (RNN), support vector machine (SVM), decision tree (DT), random forest (RF), and generative adversarial network (GAN), were evaluated. The convolutional neural network (CNN) algorithm demonstrated superior performance among all the algorithms evaluated in this study. The CNN model exhibited robustness against noise and variability, scalability for handling large datasets with multiple input variables, and parallelization capabilities for fast processing. Moreover, it autonomously learned and identified data patterns, resulting in fewer outlier predictions. The CNN model achieved the highest accuracy in GWL prediction, with an RMSE of 0.0558 and an R2 of 0.9948. It also showed no outlier data predictions, indicating its reliability. Spearman and Pearson correlation analyses revealed that P and E were the dataset’s most influential variables on GWL. This research has significant implications for water resource management in Izeh City and the Khuzestan province of Iran, aiding in conservation efforts and increasing local crop productivity. The approach can also be applied to predicting GWL in various global regions facing water scarcity due to population growth. Future researchers are encouraged to consider these factors for more accurate GWL predictions. Additionally, the CNN algorithm’s performance can be further enhanced by incorporating additional input variables.

Publisher

Frontiers Media SA

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3