Tropical insectivorous birds’ predation patterns that promote forest–farmland trophic connectivity for integrated top–down pest biocontrol

Author:

Otieno Nickson Erick,Mukasi Jonathan

Abstract

Although conversion of natural forest to agriculture can negatively impact biodiversity in many ways, some affected species may respond by dispersing across the forest–farmland eco-zone, thereby facilitating functional connections through food-web interactions beneficial to crop production and forestry. This study examined patterns of Lepidoptera (butterflies and moths), Hemiptera (bugs), and Coleoptera (beetles) herbivory, and insectivorous bird predation within forest-adjacent farms in western Kenya, and how these processes trophically connect the two ecosystems to promote pest biocontrol. Through δ13C and δ15N stable isotope analyses, proportions of maize, farmland legumes and forest trees in pest diets, and pest-prey in bird’s diets were estimated. Birds’ habitat associations and diet specializations’ influence on pest consumption and basal plant carbon levels in birds’ tissues were determined to evaluate birds’ pest-biocontrol potential. Maize was the mostly consumed plant especially by Lepidoptera, but forest trees were peimarily consumed by Coleoptera and Hemiptera. In turn, Lepidoptera were mainly consumed by forest-associated birds, whereas Hemiptera and Coleoptera were mostly consumed by farmland-associated birds. Thus, birds showed cross-habitat pest consumption tendencies, though diet-specialization was unimportant in predicting those tendencies. Muscicapidae (flycatchers and allies); Hirundinidae (swifts and swallows); Motacillidae (pipits and wagtails); and Ploceidae (weavers) birds showed the highest contributory potential for pest biocontrol of Lepidoptera pests, but Estrildidae (manikins and waxbills), Muscicapidae, and Malaconotidae (boubous and gonoleks) birds showed the best potential against Hemiptera and Coleoptera. Furthermore, more maize basal carbon was assimilated by forest-associated compared to farmland-associated birds, whereas most basal carbon from farmland legumes and forest trees were assimilated by farmland birds, suggesting that unlike pest-prey choice, basal plant carbon pathways to avian insectivorous consumers did not strongly mirror birds’ habitat associations. Lepidoptera and Hemiptera were potentially the most significant interhabitat trophic connector arthropods, and for birds, Muscicapidae, Ploceidae, and Estrildidae. These findings show that such functional connectivity may be enhanced through increasing structural cover elements that promote insectivorous birds’ dispersal between farmland and adjacent forests to boost their pest-regulation ecosystem service contribution. The results serve to inform effective management practices by agronomists, foresters, and land-use planners toward promoting landscape-scale-integrated pest management for sustainable agriculture and biodiversity conservation.

Publisher

Frontiers Media SA

Subject

General Environmental Science

Reference119 articles.

1. Land use cover changes the bird distribution and functional groups at the local and landscape level in a Mexican shaded-coffee agroforestry system;Alvarez-Alvarez;Agric. Ecosys. Environ.,2022

2. Push-pull technology and determinants influencing expansion among smallholder producers in Western Kenya;Amudavi,2008

3. Permutational multivariate analysis of variance (PERMANOVA) AndersonM. J. 2017

4. Arthropod community structure along a latitudinal gradient: Implications for future impacts of climate change;Andrew;Austr. Ecol.,2005

5. Farmland birds occupying forest clear-cuts respond to both local and landscape features;Bakx;For. Ecol. Manag.,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3