An integrated mitigation approach to diffuse agricultural water pollution–a scoping review

Author:

Quill Luke,Ferreira Diogo,Joyce Brian,Coleman Gabriel,Harper Carla,Martins Marta,Hodkinson Trevor,Trimble Daniel,Gill Laurence,O’Connell David W.

Abstract

Non-point source pollution and water eutrophication from agricultural runoff present global challenges that impact ground and surface waters. The search for a feasible and sustainable mitigation strategy to combat this issue remains ongoing. This scoping review aims to explore one potential solution by examining relevant literature on agricultural practices of the past and recent edge-of-field measures, designed to ameliorate the impacts of agricultural runoff on soil and water quality. The study focuses on integrating findings from diverse research fields into a novel myco-phytoremediation approach, which involves the synergistic relationship of plants, arbuscular mycorrhizal fungi, and plant beneficial bacteria within vegetative buffer strips. The implementation of these augmented buffer strips enhances nutrient retention in the soil, reduces runoff volume, promotes biodiversity, and increases plant biomass. This biomass can be converted into biochar, an effective sorbent that can be used to filter dissolved and particulate nutrients from surface waterways. The resulting nutrient-rich biochar can be repurposed as a form of bio-fertiliser, optimizing fertiliser consumption and subsequently reducing the depletion rate of phosphorus, a limited resource. This paper investigates a circular model of abatement of agricultural runoff via maximal nutrient retention and subsequent recycling of nitrogen and phosphorus back into the agricultural system. The key impact lies in its contribution to addressing the issue of non-point source pollution and eutrophication by encouraging multidisciplinary research aimed at solving these complex environmental issues.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3