Ecological construction status of photovoltaic power plants in China’s deserts

Author:

Wang Yimeng,Liu Benli,Xing Yu,Peng Huaiwu,Wu Hui,Zhong Jianping

Abstract

Solar photovoltaic (PV) is one of the most environmental-friendly and promising resources for achieving carbon peak and neutrality targets. Despite their ecological fragility, China’s vast desert regions have become the most promising areas for PV plant development due to their extensive land area and relatively low utilization value. Artificial ecological measures in the PV plants can reduce the environmental damage caused by the construction activity and promote the ecological condition of fragile desert ecosystems, therefore yield both ecological and economic benefits. However, the understanding of the current status and ecological benefits of this approach in existing desert PV plants is limited. Here we surveyed 40 PV plants in northern China’s deserts to identify the ecological construction modes and their influencing factors. We quantified the ecosystem service value (ESV) provided by these PV plants using remote sensing data and estimated the potential for ESV enhancement. Our results show that PV plant construction in desert regions can significantly improve the ecosystem, even with natural restoration measures (M1) alone, resulting in a 74% increase in average fractional vegetation cover (FVC) during the growing season, although the maximum average FVC of only about 10%. The integrated mode M4, which combined artificial vegetation planting M2 and sand control measures M3, further enhance the average growing season FVC to 14.53%. Currently, 22.5% of plants lack ecological measures, 40% employ only a single measure, but 92% of new plants since 2017 have adopted at least one ecological construction mode. The main influencing factors include surface type, policy support, water resources, ecological construction costs, and scientific management guidance. If artificial ecological construction were incorporated, a significant ESV could be achieved in these PV plants, reaching $8.9 million (a 7.7-fold increase) if assuming a targeted 50% vegetation coverage. This study provides evidence for evaluating the ecological benefit and planning of large-scale PV farms in deserts.

Publisher

Frontiers Media SA

Reference59 articles.

1. Land use and climate change impacts on global soil erosion by water (2015-2070);Borrelli;Proc. Natl. Acad. Sci.,2020

2. Ecological functions of PV power plants in the Desert and gobi;Chang;J. Resour. Ecol.,2016

3. Sand fixation effect of photovoltaic field of gobi desert - take Gansu hexi corridor as an example (in Chinese with English abstract);Chang;Soil Water Conservation China.,2018

4. The 14th Five-Year Plan" installed capacity of about 200 million kilowatts, the second batch of scenery base planning landing2022

5. Effects of revegetation on soil physical and chemical properties in solar photovoltaic infrastructure;Choi;Front. Environ. Sci.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3