The dominant role of aerosol-cloud interactions in aerosol-boundary layer feedback: Case studies in three megacities in China

Author:

Xiong Changrui,Li Jing,Liu Zhenxin,Zhang Zhenyu

Abstract

Interactions between aerosols and meteorology have received increasing attention in recent decades. Through interactions with radiation, aerosols involve in thermodynamic processes and cause cloud adjustment, referred to as the direct and semi-direct effects respectively. They also involve in cloud microphysical processes by severing as cloud condensation nuclei or ice nuclei, referred to as indirect effect. Aerosol direct effect is found to potentially exacerbate air quality by stabilizing the planetary boundary layer (PBL). However, their impacts through the interaction with clouds, including semi-direct and indirect effect remain unclear. In this study, we conducted model simulations to evaluate the direct, semi-direct and indirect effects of aerosols in PBL structure and surface PM2.5 concentration during three heavy haze events under overcast conditions. Overall, the aerosol-PBL feedback results in a 22%–36% decrease of PBL height and 5%–28% increase of PM2.5 concentration. The indirect effect always has the largest impact on PBL and PM2.5 pollution, accounting for 59%–84% of the changes. The semi-direct effect is the weakest on average, although it can exceed the direct effect at certain times and locations. Black carbon aerosols play the vital role in both the direct and semi-direct effects. Our findings promote the understanding of heavy haze formation, and highlight the dominant role of aerosol-cloud interaction in the feedback process of aerosols to PBL structure and air quality.

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3