Nitrous Oxide Consumption Potential in a Semi-Arid Agricultural System: Effects of Conservation Soil Management and Nitrogen Timing on nosZ Mediated N2O Consumption

Author:

McDonald Mark D.,Lewis Katie L.,DeLaune Paul B.,Boutton Thomas W.,Reed Jacob D.,Gentry Terry J.

Abstract

Agricultural soils account for less than 10% of the total greenhouse gas (GHG) emissions in the United States but about 75% of nitrous oxide (N2O) emissions. Soil conservation practices, such as no-tillage, have the potential to mitigate GHG emissions. We examined the short-term consequences of no-tillage with a winter wheat cover crop (NTW) and no-tillage winter fallow (NT) on N2O emissions, N2O reducing bacterial populations, and overall soil bacterial abundance during the summer growing season in the southern Great Plains, United States. Conservation practices were coupled with nitrogen (N) fertilizer application timing (100% pre-plant, 100% mid-season, 40% pre-plant 60% mid-season, 100% pre-plant with N stabilizer). In addition, N2O emissions were measured to determine any functional effects of altering N fertilizer timing and changing bacterial populations. The combination of N treatment and conservation practice affected nosZ clade II abundance in the second year of the study. Diversity of nosZ clade II was evaluated to determine effects on non-typical N2O reducers which were highly abundant in this study. No nosZ clade II diversity effects were determined, although some clustering of conservation system and N treatments was observed in the second year. Nitrogen treatment affected N2O-N emissions during the summer of both years, likely related to overall increased microbial activity and N fertilizer application. Negative fluxes (consumption) of N2O-N were observed in every treatment and tillage combination and were most pronounced in the control (0 kg N ha−1). Negative fluxes are likely due to a combination of low inorganic-N concentrations at various points during the year and a robust clade II population driving N2O consumption. Altering conservation system and the timing of N fertilizer application affects the microbial community and will likely continue to select for unique communities as the system matures. This will also likely further impact N2O emissions from the system and may increase the rate and frequency of N2O consumption.

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3