Spatial heterogeneity and impact scales of driving factors of precipitation changes in the Beijing-Tianjin-Hebei region, China

Author:

Wei Feili,Liu Dahai,Liang Ze,Wang Yueyao,Shen Jiashu,Wang Huan,Zhang Yajuan,Wang Yongxun,Li Shuangcheng

Abstract

Changes in land surface properties during urbanization have a significant impact on variations in precipitation. Little research has been carried out on spatial heterogeneity and influence strength of the driving factors of precipitation changes at different urbanization scales. Using a trend analysis and multi-scale geographically weighted regression, this study analysed the spatial heterogeneity and impact scale of driving factors of precipitation changes in 156 urban units in the Beijing-Tianjin-Hebei urban agglomeration region (Jing-Jin-Ji). In summer, RAD (radiation), RHU (relative humidity), WIN (wind speed), and POP (urban population density) were found to act on a small regional scale, AOD (aerosol optical depth) on a medium regional scale, and NDVI (normalized difference vegetation index), NLI (night time light intensity), UHI (urban heat island intensity), and AREA (urban area size) on a global scale. In winter, AREA and WIN acted on a medium regional scale, UHI on a large regional scale, and AOD, NDVI and NLI on a global scale. Across the whole year, NDVI and AREA had a medium regional impact and NLI a large regional one. Variations in natural factors, such as RAD and RHU, had a great influence on the spatial heterogeneity of precipitation changes, whereas human factors, such as NLI and UHI, had a small influence. In summer, AOD mainly affected Tangshan and Qinhuangdao in the northeast and Cangzhou in the southeast of the Jing-Jin-Ji. RHU and AREA primarily affected the cities of Handan and Xingtai. In winter, NLI, AREA, WIN, and UHI had significant effects in the cities of Handan and Xingtai, with AREA being the most important factor. In the Shijiazhuang-Hengshui area, RAD and NLI played a significant role; in the Beijing-Zhangjiakou-Chengde area, the most important factor affecting precipitation changes was the variation in POP. These results provide a scientific basis for flood disaster risk management in the Jing-Jin-Ji and the establishment of differentiated climate policies in different cities.

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3