Evaluating the Benefits of Bayesian Hierarchical Methods for Analyzing Heterogeneous Environmental Datasets: A Case Study of Marine Organic Carbon Fluxes

Author:

Britten Gregory L.,Mohajerani Yara,Primeau Louis,Aydin Murat,Garcia Catherine,Wang Wei-Lei,Pasquier Benoît,Cael B. B.,Primeau François W.

Abstract

Large compilations of heterogeneous environmental observations are increasingly available as public databases, allowing researchers to test hypotheses across datasets. Statistical complexities arise when analyzing compiled data due to unbalanced spatial sampling, variable environmental context, mixed measurement techniques, and other reasons. Hierarchical Bayesian modeling is increasingly used in environmental science to describe these complexities, however few studies explicitly compare the utility of hierarchical Bayesian models to simpler and more commonly applied methods. Here we demonstrate the utility of the hierarchical Bayesian approach with application to a large compiled environmental dataset consisting of 5,741 marine vertical organic carbon flux observations from 407 sampling locations spanning eight biomes across the global ocean. We fit a global scale Bayesian hierarchical model that describes the vertical profile of organic carbon flux with depth. Profile parameters within a particular biome are assumed to share a common deviation from the global mean profile. Individual station-level parameters are then modeled as deviations from the common biome-level profile. The hierarchical approach is shown to have several benefits over simpler and more common data aggregation methods. First, the hierarchical approach avoids statistical complexities introduced due to unbalanced sampling and allows for flexible incorporation of spatial heterogeneitites in model parameters. Second, the hierarchical approach uses the whole dataset simultaneously to fit the model parameters which shares information across datasets and reduces the uncertainty up to 95% in individual profiles. Third, the Bayesian approach incorporates prior scientific information about model parameters; for example, the non-negativity of chemical concentrations or mass-balance, which we apply here. We explicitly quantify each of these properties in turn. We emphasize the generality of the hierarchical Bayesian approach for diverse environmental applications and its increasing feasibility for large datasets due to recent developments in Markov Chain Monte Carlo algorithms and easy-to-use high-level software implementations.

Funder

Simons Foundation

U.S. Department of Energy

National Science Foundation

Publisher

Frontiers Media SA

Subject

General Environmental Science

Reference42 articles.

1. lme4: linear mixed-effects models using Eigen and S4;Bates;R package version,2013

2. A conceptual introduction to Hamiltonian Monte Carlo BetancourtM. 2017

3. Data-based estimates of suboxia, denitrification, and N2O production in the ocean and their sensitivities to dissolved O2;Bianchi;Glob. Biogeochem. Cycles,2012

4. How data set characteristics influence ocean carbon export models;Bisson;Glob. Biogeochem. Cycles,2018

5. On simpson’s paradox and the sure-thing principle;Blyth;J. Am. Stat. Assoc.,1972

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3