Environmental and Biological Determinants of Algal Lipids in Western Arctic and Subarctic Seas

Author:

Marmillot Vincent,Parrish Christopher C.,Tremblay Jean-Éric,Gosselin Michel,MacKinnon Jenna F.

Abstract

The Arctic is undergoing numerous environmental transformations. As a result of rising temperatures and additional freshwater inputs, ice cover is changing, with profound impacts on organisms at the base of food webs and consequently on the entire Arctic ecosystem. Indeed, phytoplankton not only provide energy as lipids, but also essential fatty acids (EFA) that animals cannot synthesize and must acquire in their diet. Omega-3 (ω3) and omega-6 (ω6) polyunsaturated fatty acids (PUFA) are essential for the healthy development and function of organisms. The high energy potential of monounsaturated fatty acids (MUFA) is of particular importance in cold waters, and various fatty acids including saturated fatty acids (SFA) are involved in organismal responses to environmental stressors. Yet relatively little is known of how variability or change in physicochemical seawater properties (e.g., temperature, light, salinity, pH and nutrients) may affect lipid synthesis in polar environments, either directly, by altering algal physiology, or indirectly, by promoting shifts in phytoplankton species composition. Here we investigated these two possibilities by sampling along a 3,000-km transect spanning 28 degrees of latitude across the subarctic and Arctic domains of Canada. The taxonomic composition of phytoplankton mainly drove the FA profiles measured in particulate organic matter (POM). Strong, positive correlations between 16:1ω7 and diatoms were observed while the proportion of PUFA and ω6 FA increased with flagellate abundance. Among specific FAs, eicosapentaenoic acid (EPA; 20:5ω3) was positively correlated with diatoms but the expected relationship between docosahexaenoic acid (DHA; 22:6ω3) and dinoflagellates was not observed. Decreasing pH had a negative effect on EPA and MUFA proportions, and DHA proportions tended to decrease with higher temperature. These two effects were primarily driven by differences in phytoplankton assemblage composition. Overall, the results of this geographically extensive study provide new information into the use of lipid markers and the ecological determinants of FA synthesis in the North. It also highlights the importance of long-lived subsurface chlorophyll maximum layers in supplying PUFA-rich POM to the food web and suggests that this situation may persist despite ongoing changes in the physical environment.

Funder

Natural Sciences and Engineering Research Council of Canada

ArcticNet

Fonds Québécois de la Recherche sur la Nature et les Technologies

Canada First Research Excellence Fund

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3