Spatial downscaling of surface ozone concentration calculation from remotely sensed data based on mutual information

Author:

Wang Xiangkai,Xue Yong,Jin Chunlin,Sun Yuxin,Li Na

Abstract

Accurate near surface ozone concentration calculation with high spatial resolution data is very important to solve the problem of serious ozone pollution and health impact assessment. However, the existing remotely sensed ozone products cannot meet the requirements of high spatial resolution monitoring. In this study, surface O3 concentration (at 30 km spatial resolution) was extracted from the daily TROPOMI O3 profile products. Meanwhile, this study improved the downscaling algorithm based on the mutual information and applied it to the mapping of surface O3 concentration in China. Combined with the surface O3 concentration data (with 5 km spatial resolution) obtained by using the Light Gradient Boosting Machine (LightGBM) algorithm and AOD data (at 1 km resolution) from MODIS, the downscaling of TROPOMI ground O3 concentration data from 30 km to 1 km has been achieved in this study. The downscaled ground O3 concentration data were subsequently validated using an independent ground O3 concentration dataset. The main conclusion of this study is that the mutual information entropy between the bottom layer data of the TROPOMI ozone profile (at 30 km resolution), LightGBM surface O3 concentration data (at 5 km resolution), and MCD19A2 AOD data (at 1 km resolution) can accurately reduce the spatial resolution of ozone concentration in the ground layer. The downscaling procedure not only resulted in increase of the spatial resolution over the whole area but also significant improvements in precision with coefficient of determination (R2) increased from 0.733 to 0.823, mean biased error decreased from 7.905 μg/m3 to 3.887 μg/m3, and root-mean-square error decreased from 14.395 μg/m3 to 8.920 μg/m3 for ground O3 concentration.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3