Contingent Effects of Liming on N2O-Emissions Driven by Autotrophic Nitrification

Author:

Nadeem Shahid,Bakken Lars R.,Frostegård Åsa,Gaby John C.,Dörsch Peter

Abstract

Liming acidic soils is often found to reduce their N2O emission due to lowered N2O/(N2O + N2) product ratio of denitrification. Some field experiments have shown the opposite effect, however, and the reason for this could be that liming stimulates nitrification-driven N2O production by enhancing nitrification rates, and by favoring ammonia oxidizing bacteria (AOB) over ammonia oxidizing archaea (AOA). AOB produce more N2O than AOA, and high nitrification rates induce transient/local hypoxia, thereby stimulating heterotrophic denitrification. To study these phenomena, we investigated nitrification and denitrification kinetics and the abundance of AOB and AOA in soils sampled from a field experiment 2–3 years after liming. The field trial compared traditional liming (carbonates) with powdered siliceous rocks. As expected, the N2O/(N2O + N2) product ratio of heterotrophic denitrification declined with increasing pH, and the potential nitrification rate and its N2O yield (YN2O: N2O-N/NO3-N), as measured in fully oxic soil slurries, increased with pH, and both correlated strongly with the AOB/AOA gene abundance ratio. Soil microcosm experiments were monitored for nitrification, its O2-consumption and N2O emissions, as induced by ammonium fertilization. Here we observed a conspicuous dependency on water filled pore space (WFPS): at 60 and 70% WFPS, YN2O was 0.03-0.06% and 0.06–0.15%, respectively, increasing with increasing pH, as in the aerobic soil slurries. At 85% WFPS, however, YN2O was more than two orders of magnitude higher, and decreased with increasing pH. A plausible interpretation is that O2 consumption by fertilizer-induced nitrification cause hypoxia in wet soils, hence induce heterotrophic nitrification, whose YN2O decline with increasing pH. We conclude that while low emissions from nitrification in well-drained soils may be enhanced by liming, the spikes of high N2O emission induced by ammonium fertilization at high soil moisture may be reduced by liming, because the heterotrophic N2O reduction is enhanced by high pH.

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3