Estimating Nitrogen Flows and Nitrogen Footprint for Agro-Food System of Rwanda Over the Last Five Decades: Challenges and Measures

Author:

Harerimana Barthelemy,Zhou Minghua,Shaaban Muhammad,Zhu Bo

Abstract

This study presents the first detailed estimate of Rwanda’s nitrogen (N) flows and N footprint for food (NFfood) from 1961 to 2018. Low N fertilizer inputs, substandard production techniques, and inefficient agricultural management practices are focal causes of low crop yields, environmental pollution, and food insecurity. We therefore assessed the N budget, N use efficiency (NUE), virtual N factors (VNFs), soil N mining factors (SNMFs), and N footprint for the agro-food systems of Rwanda with consideration of scenarios of fertilized and unfertilized farms. The total N input to croplands increased from 14.6 kg N ha−1 yr−1 (1960s) to 34.1 kg N ha−1 yr−1 (2010–2018), while the total crop N uptake increased from 18 kg N ha−1yr−1 (1960s) to 28.2 kg N ha−1yr−1 (2010–2018), reflecting a decline of NUE from 124% (1960s) to 85% (2010–2018). Gaseous N losses of NH3, N2O, and NO increased from 0.45 (NH3), 0.03 (N2O), and 0.00 (NO) Gg N yr−1 (1960s) to 6.98 (NH3), 0.58 (N2O), and 0.10 (NO) Gg N yr−1 (2010–2018). Due to the low N inputs, SNMFs were in the range of 0.00 and 2.99 and the rice production, cash-crop production, and livestock production systems have greater SNMFs in Rwanda. The weighted NFfood per capita that presents the actual situation of fertilized and unfertilized croplands increased from 4.0 kg N cap−1 yr−1 (1960s) to 6.3 kg N cap−1 yr−1 (2010–2018). The NFfood per capita would increase from 3.5 kg N cap−1 yr−1 to 4.8 kg N cap−1 yr−1 under a scenario of all croplands without N fertilizer application and increase from 6.0 to 8.7 kg N cap−1 yr−1 under the situation of all croplands receiving N fertilizer. The per capita agro-food production accounted for approximately 58% of the national NFfood. The present study indicates that Rwanda is currently suffering from low N inputs, high soil N depletion, food insecurity, and environmental N losses. Therefore, suggesting that the implementation of N management policies of increasing agricultural N inputs and rehabilitating the degraded soils with organic amendments of human and animal waste needs to be carefully considered in Rwanda.

Publisher

Frontiers Media SA

Subject

General Environmental Science

Reference116 articles.

1. Application of Multitemporal Landsat Data to Monitor Land Cover Changes in the Eastern Nile Delta Region, Egypt;Abdulaziz;Int. J. Remote Sensing,2009

2. Second Biennial Review Report of the African Union Commission on the Implementation of the Malabo Declaration on Accelerated Africa Agricultural Growth and Transformation for Shared prosperity and Improved Livelihoods. Assembly of the union Thirty-Third2020

3. Civil War, Crop Failure, and Child Stunting in Rwanda;Akresh;Econ. Dev. Cult. Change,2011

4. Emissions of N2O and NO from Fertilized fields: Summary of Available Measurement Data;Bouwman;Glob. Biogeochem. Cycles

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3