Investigation of low-level supergeostrophic wind and Ekman spiral as observed by a radar wind profiler in Beijing

Author:

Wang Songqiu,Guo Jianping,Xian Tian,Li Ning,Meng Deli,Li Hongjin,Cheng Wei

Abstract

The supergeostrophic flow remains seldomly reported from an observational perspective. Here, 1 year record of radar wind profiler measurements and ERA-5 reanalysis collected at Beijing observatory station are used to characterize the vertical structures of supergeostrophic wind and Ekman spirals in the lower troposphere. It is found that supergeostrophic flow shows significant diurnal variation, with lowest frequency for the supergeostrophic wind forming during daytime under clear-sky conditions, largely due to strong turbulent mixing and friction in the daytime. By comparison, the planetary boundary layer at night is stably stratified, the supergeostrophic wind occurs more frequently due to friction-induced decoupling from the ground surface. Furthermore, the presence of cloud makes the supergeostrophic wind occur more often in the daytime. Also, the geostrophic wind deviation within 1 km of atmosphere is found to be more negatively associated with the difference between surface temperature and 2-m air temperature compared with that in the altitude range of 1–3 km, indicating that the supergeostrophic wind near ground surface is more subject to the influence of heat flux. Intriguingly, most of the vertical wind profiles in the PBL are found not to follow Ekman spiral under neutral atmospheric conditions. The supergeostrophic winds contribute significantly to the magnitude of Ekman spirals in the upper mixed layer. Overall, the profiles and evolution features of the supergeostrophic wind and Ekman spirals observed in the lower troposphere in Beijing are much complicated than expected. The findings lay a solid foundation for better elucidating the low-level atmospheric dynamics in Beijing.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3