Machine Learning With GA Optimization to Model the Agricultural Soil-Landscape of Germany: An Approach Involving Soil Functional Types With Their Multivariate Parameter Distributions Along the Depth Profile

Author:

Ließ Mareike,Gebauer Anika,Don Axel

Abstract

Societal demands on soil functionality in agricultural soil-landscapes are confronted with yield losses and environmental impact. Soil functional information at national scale is required to address these challenges. On behalf of the well-known theory that soils and their site-specific characteristics are the product of the interaction of the soil-forming factors, pedometricians seek to model the soil-landscape relationship using machine learning. Following the rationale that similarity in soils is reflected by similarity in landscape characteristics, we defined soil functional types (SFTs) which were projected into space by machine learning. Each SFT is described by a multivariate soil parameter distribution along its depth profile. SFTs were derived by employing multivariate similarity analysis on the dataset of the Agricultural Soil Inventory. Soil profiles were compared on behalf of differing sets of soil properties considering the top 100 and 200 cm, respectively. Various depth weighting coefficients were tested to attribute topsoil properties higher importance. Support vector machine (SVM) models were then trained employing optimization with a distributed multiple-population hybrid Genetic algorithm for parameter tuning. Model training, tuning, and evaluation were implemented in a nested k-fold cross-validation approach to avoid overfitting. With regards to the SFTs, organic soils were differentiated from mineral soils of various particle size distributions being partly influenced by waterlogging and groundwater. Further SFTs reflect soils with a depth limitation within the top 100 cm and high stone content. Altogether, with SVM predictive model accuracies between 0.7 and 0.9, the agricultural soil-landscape of Germany was represented with eight SFTs. Soil functionality with regards to the soil’s capacity to store plant-available water and soil organic carbon is well characterized. Four additional soil functions are described to a certain extent. An extension of the approach to fully cover soil functions such as nutrient cycling, agricultural biomass production, filtering of contaminants, and soil as a habitat for soil biota is possible with the inclusion of additional soil properties. Altogether, the developed data product represents the 3D multivariate soil parameter space. Its agglomerated simplicity into a limited number of spatially allocated process units provides the basis to run agricultural process models at national scale (Germany).

Publisher

Frontiers Media SA

Subject

General Environmental Science

Reference109 articles.

1. Böden im Überblick;Adler,2003

2. Genetic Algorithms and Genetic Programming

3. Die heißesten und kältesten Gebiete;Alexander,2003

4. Soil Compaction Parameters Prediction Using GMDH-Type Neural Network and Genetic Algorithm;Ardakani;Eur. J. Environ. Civ. Eng.,2017

5. Die Geologie von Deutschland – ein Flickenteppich;Asch,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3