Organic carbon and silt determining subcritical water repellency and field capacity of soils in arid and semi-arid region

Author:

Mao Jiefei,Li Yaoming,Zhang Junfeng,Zhang Kun,Ma Xuexi,Wang Guangyu,Fan Lianlian

Abstract

Soil water repellency (SWR) is frequently observed in different types of land use and climates. Since SWR potentially enhances the difficulty of water infiltration in soil, the phenomenon can severely impact the water use of plants in arid regions. Therefore, understanding the origin of SWR is crucial in arid and semi-arid regions. This study investigated the fundamental and hydrological properties of soils in three arid ecosystems (desert, farmland, and forest). Analysis was done to determine any potential links between these properties, vegetation cover, and the severity of SWR. It was found that SWR was positively correlated with soil organic carbon (SOC), silt content, and field capacity of soil, where the SWR was in subcritical SWR range. The linear correlation and hierarchical clustering analysis confirmed that the SOC and silt content was the critical factor affecting the occurrence and persistence of SWR. The major source of organic carbon and nutrients to the soil was vegetation, which also had an impact on the distribution of soil carbon. The most striking observation was that the silt content was strongly correlated with both field capacity (r = 0.817, p = 0.001) and SWR (r = 0.710, p = 0.010), which can be attributed to the SOC on silt. In arid and semi-arid regions, the specific surface area of silt was relatively larger than that of sand. Meanwhile, compared to the clay in soil, the proportion of silt was much higher. The results imply that silt could significantly affect the soil hydrological properties and that silt content could serve as a new proxy for predicting water repellency in arid and semi-arid regions.

Funder

National Natural Science Foundation of China

K. C. Wong Education Foundation

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3