K-textures, a self-supervised hard clustering deep learning algorithm for satellite image segmentation

Author:

Wagner Fabien H.,Dalagnol Ricardo,Sánchez Alber H.,Hirye Mayumi C. M.,Favrichon Samuel,Lee Jake H.,Mauceri Steffen,Yang Yan,Saatchi Sassan

Abstract

Deep learning self-supervised algorithms that can segment an image in a fixed number of hard clusters such as the k-means algorithm and with an end-to-end deep learning approach are still lacking. Here, we introduce the k-textures algorithm which provides self-supervised segmentation of a 4-band image (RGB-NIR) for a k number of classes. An example of its application on high-resolution Planet satellite imagery is given. Our algorithm shows that discrete search is feasible using convolutional neural networks (CNN) and gradient descent. The model detects k hard clustering classes represented in the model as k discrete binary masks and their associated k independently generated textures, which combined are a simulation of the original image. The similarity loss is the mean squared error between the features of the original and the simulated image, both extracted from the penultimate convolutional block of Keras “imagenet” pre-trained VGG-16 model and a custom feature extractor made with Planet data. The main advances of the k-textures model are: first, the k discrete binary masks are obtained inside the model using gradient descent. The model allows for the generation of discrete binary masks using a novel method using a hard sigmoid activation function. Second, it provides hard clustering classes–each pixel has only one class. Finally, in comparison to k-means, where each pixel is considered independently, here, contextual information is also considered and each class is not associated only with similar values in the color channels but with a texture. Our approach is designed to ease the production of training samples for satellite image segmentation and the k-textures architecture could be adapted to support different numbers of bands and for more complex self-segmentation tasks, such as object self-segmentation. The model codes and weights are available at https://doi.org/10.5281/zenodo.6359859.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Natural Environment Research Council

Fundo Amazônia

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3