Annual CO2 Budget Estimation From Chamber-Based Flux Measurements on Intensively Drained Peat Meadows: Effect of Gap-Filling Strategies

Author:

Liu Weier,Fritz Christian,Weideveld Stefan T. J.,Aben Ralf C. H.,van den Berg Merit,Velthuis Mandy

Abstract

Estimating annual CO2 budgets on drained peatlands is important in understanding the significance of CO2 emissions from peatland degradation and evaluating the effectiveness of mitigation techniques. The closed-chamber technique is widely used in combination with gap-filling of CO2 fluxes by parameter fitting empirical models of ecosystem respiration (Reco) and gross primary production (GPP). However, numerous gap-filling strategies are available which are suitable for different circumstances and can result in large variances in annual budget estimates. Therefore, a need for guidance on the selection of gap-filling methodology and its influence on the results exists. Here, we propose a framework of gap-filling methods with four Tiers following increasing model complexity at structural and temporal levels. Tier one is a simple parameter fitting of basic empirical models on an annual basis. Tier two adds structural complexity by including extra environmental factors such as grass height, groundwater level and drought condition. Tier three introduces temporal complexity by separation of annual datasets into seasons. Tier four is a campaign-specific parameter fitting approach, representing highest temporal complexity. The methods were demonstrated on two chamber-based CO2 flux datasets, one of which was previously published. Performance of the empirical models were compared in terms of error statistics. Annual budget estimates were indirectly validated with carbon export values. In conclusion, different gap-filling methodologies gave similar annual estimates but different intra-annual CO2 fluxes, which did not affect the detection of the treatment effects. The campaign-wise gap-filling at Tier four gave the best model performances, while Tier three seasonal gap-filling produced satisfactory results throughout, even under data scarcity. Given the need for more complete carbon balances in drained peatlands, our four-Tier framework can serve as a methodological guidance to the handling of chamber-measured CO2 fluxes, which is fundamental in understanding emissions from degraded peatlands and its mitigation. The performance of models on intra-annual data should be validated in future research with continuous measured CO2 flux data.

Funder

China Scholarship Council

European Regional Development Fund

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3