Spatiotemporal Changes of Near-Surface Ozone Concentration From 2015 to 2018 in Beijing

Author:

Xie Junfei,Shi Shengwei,Wu Lingyun,Zhang Xin

Abstract

In this study, we investigated the spatiotemporal changes of near-surface O3 concentration based on 33 automatic air quality monitoring stations in Beijing in 2015 and 2018. Here we show that the diurnal variations for O3 concentration at 33 monitoring stations exhibited a single-peak mode with a minimum concentration from 06:00 to 07:00 and a maximum value from 14:00 to 15:00. We find that the O3 concentration was significantly positively correlated with the air temperature, solar total radiation, and wind speed, while it was negatively correlated with the relative humidity. Among those factors, the air temperature played the most important role in influencing O3 concentration (relative contribution is greater than 88% in the boosted regression trees model). We also present that the annual variation of O3 concentration at all stations tended to be a “bell-shaped” curve distribution with a peak in summer and the lowest value in winter. The annual averaged O3 concentration at 33 stations in Beijing was 57.5 ± 9.8 μg⋅m−3 in 2015 and 60.3 ± 9.0 μg⋅m−3 in 2018. In addition, we detect that the annual averaged value of the O3 concentration was lower in the central and southern Beijing, and higher in the northern Beijing both in 2015 and 2018. The spatial difference of the O3 concentration could be explained by the traffic pollution, vegetation coverage, atmospheric regional transmission, and atmospheric particulate matter concentration.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Environmental Science

Reference42 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3