Effects of biogenic volatile organic compounds and anthropogenic NOx emissions on O3 and PM2.5 formation over the northern region of Thailand

Author:

Uttamang Pornpan,Janta Radshadaporn,Bran Sherin Hassan,Macatangay Ronald,Surapipith Vanisa,Tala Wittaya,Chantara Somporn

Abstract

Biogenic volatile organic compounds (BVOC), which are mainly emitted from plants, are a major precursor for the formation of ground-level ozone (O3) and secondary organic aerosols (SOA). In the northern region of Thailand, 63.8% of the land area is covered by forests. Herein we investigated the effects of biogenic volatile organic compounds (BVOC) emitted from plants and anthropogenic NOx emissions on ground-level ozone (O3) and fine particulate matters (PM2.5) formation. The Weather Research and Forecasting Model coupled with Chemistry (WRF-Chem Model) was applied to simulate three scenarios including baseline, noBio and modiAntho simulations. The modeling results over the northern region of Thailand indicate that BVOC emissions over the northern region of Thailand contributed only 5.3%–5.6% of the total concentrations of PM2.5 and BVOC had a direct relationship to glyoxal and SOA of glyoxal. The comparison between the observed and the modeled isoprene over the study site showed an underestimation (3- to 4-folds) of the simulated concentrations during the study period (June and November 2021). In June, decreases in anthropogenic NOx emissions by 40% led to PM2.5 reductions (5.3%), which corresponded to a zero BVOC emission scenario. While higher PM2.5 reductions (5.6%) were found to be caused by anthropogenic NOx reductions in November, small increases in PM2.5 were observed over the area near a power plant located in Lampang Province. Therefore, both VOC and NOx emission controls may be necessary for areas near the lignite mine and power plant. Since the areas within the vicinity of the power plant were under VOC-limited regimes, while the other areas were determined to be NOx-limited.

Funder

National Research Council of Thailand

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3