Responses of Phytoplanktonic Chlorophyll-a Composition to Inorganic Turbidity Caused by Mine Tailings

Author:

Nunes Patrícia,Roland Fabio,Amado André M.,Resende Nathália da Silva,Cardoso Simone Jaqueline

Abstract

Inorganic turbidity can limit light penetration in water and reduce phytoplankton photosynthesis. Anthropogenic activities such as mining can produce or augment the amount of suspended inorganic particles in water. Recent mining disasters in Brazil have released tons of mine tailings into aquatic ecosystems, with known and unknown negative consequences for aquatic life, biodiversity, and ecosystem services beyond the human and material losses. Here, we investigated the effects of inorganic turbidity on phytoplankton chlorophyll content and composition caused by sediments from two areas in Lake Batata, one natural and the other impacted by bauxite tailings. We experimentally compared the effects of different levels of turbidity (12, 50, and 300 NTU) caused by the addition of sediments from the two lake areas on a chlorophyll-a gradient (5, 15, and 25 μg/L). Inorganic turbidity did not consistently reduce chlorophyll-a concentrations. In treatments with high chlorophyll-a, high turbidity was associated with lower chlorophyll-a concentrations at the end of the experiment. On the other hand, in low-chlorophyll treatments, high turbidity was associated with higher chlorophyll-a concentrations. In treatments with sediments from the natural area, overall chlorophyll-a levels were higher than in treatments with sediments from the impacted area. Phagotrophic algae dominated both in treatments with sediments from the impacted area (Chrysophyceae 34%, Chlorophyceae 26%, and Cyanobacteria 22% of total density) and in treatments with sediment from the natural area (Euglenophyceae 26%, Chrysophyceae 23%, and Chlorophyceae 20%). We conclude that high turbidity does not lead to a reduction in chlorophyll-a concentrations and sediment from the natural area allowed higher chlorophyll-a levels, indicating that impacted area sediment affected more phytoplankton.

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3