Stream nitrogen uptake associated with suspended sediments: A microcosm study

Author:

Bacmeister Eva,Peck E.,Bernasconi S.,Inamdar S.,Kan J.,Peipoch M.

Abstract

Despite significant advances in our understanding of nitrogen (N) removal pathways along river networks, the role of water column processes remains largely understudied. This knowledge gap not only limits our capacity to determine N transport and retention in mid-to-large rivers but also hampers our understanding of N removal processes in smaller streams during stormflow conditions, in which significant increases in suspended sediment concentrations (SSC) typically occur. High SSC in the water column can provide abundant substrate for microbial growth and water column N uptake. However, storms of different size mobilize different quantities of sediment of varying properties and sizes, which can ultimately modulate water column N uptake rates in the stream during stormflows. To assess water column N uptake associated with suspended sediment particles of different sources and sizes, we quantified assimilatory and dissimilatory N uptake rates in a set of microcosms representing a gradient of sediment properties (organic matter, N content, and microbial activity) and surface area (fine vs. coarse size) availability. Water column assimilatory uptake (Used) ranged from 12.7 to 187.8 µg N [g sediment]−1 d−1 across all sediment sources and size fractions, and was higher on average than denitrification rates (DNsed) in agricultural and stream bank sediments but not in streambed sediments (mean DNsed = 240.9 ± 99 µg·N [g sediment]−1·d−1). Sediment-bound C in suspended sediment varied among sediment sources and was directly related to Used rates, but not to DNsed rates, which were less predictable and more variable. Overall, our results showed a positive nonlinear relationship between water column N uptake and SSC, while indicating that water column N uptake may scale differently to SSC depending on sediment source, and to a lesser degree, particle size. Because low, moderate, and large storms can mobilize different quantities of sediment in the watershed of different sources and sizes, it is likely that storm size will ultimately modulate the contribution of water column uptake during storm events to whole-reach N retention.

Funder

U.S. Department of Agriculture

National Science Foundation

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3