Relationship between tropical leaf phenology and ecosystem productivity using phenocameras

Author:

Alberton Bruna,Martin Thomas C. M.,Da Rocha Humberto R.,Richardson Andrew D.,Moura Magna S. B.,Torres Ricardo S.,Morellato Leonor Patricia Cerdeira

Abstract

Introduction: The interplay of water and light, regarded as the main driver of tropical plant dynamics, determines leaf phenology and ecosystem productivity. Leaf phenology has been discussed as a key variable to explain photosynthetic seasonality in evergreen tropical forests, but the question is still open for seasonally tropical ecosystems. In the search for implementing long-term phenology monitoring in the tropics, phenocameras have proven to be an accurate method to estimate vegetative phenology in tropical communities. Here, we investigated the temporal patterns of leaf phenology and their relation to gross primary productivity (GPP) in a comparative study across three contrasting tropical biomes: dry forest (caatinga), woodland savanna (cerrado), and rainforest (Atlantic Forest).Methods: We monitored leaf phenology (phenocameras) and estimated gross primary productivity (eddy-covariance) continuously over time at three study sites. We investigated the main drivers controlling leaf phenology and tested the performance of abiotic (climate) and biotic (phenology) factors to explain gross primary productivity across sites.Results: We found that camera-derived indices presented the best relationships with gross primary productivity across all sites. Gross primary productivity seasonality was controlled by a gradient of water vs. light, where caatinga dry forest was water-limited, cerrado vegetation responded to water seasonality and light, and rainforest was mainly controlled by light availability. Vegetation phenology was tightly associated with productivity in the driest ecosystem (caatinga), where productivity was limited to the wet season, and the camera-derived index (Gcc) was the best proxy for gross primary productivity.Discussion: Leaf phenology increased their relative importance over gross primary productivity seasonality at less seasonal sites (cerrado and rainforest), where multiple leafing strategies influenced carbon exchanges. Our multi-site comparison, along with fine-scale temporal observations of leaf phenology and gross primary productivity patterns, uncovered the relationship between leafing and productivity across tropical ecosystems under distinct water constraints.

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3