Spatiotemporal distribution and prediction of chlorophyll-a in Ulansuhai lake from an arid area of China

Author:

Liu Xuhua,Liu Huamin,Chen Han,Liu Yang,Xu Zhichao,Cao Xiaoai,Ma Linqian,Pan Baozhu,Wang Lixin

Abstract

Lake Ulansuhai, a typical shallow lake in an arid area that is economically and ecologically important along the Yellow River, is currently eutrophic. Long-term (2010–2020) data on chlorophyll-a, nutrient, and environmental factors were obtained from three Lake Ulansuhai monitoring stations. The temporal and spatial distribution characteristics of Chl-a were analyzed. Additionally, a hybrid evolutionary algorithm was established to simulate and predict Chl-a, and sensitivity analysis revealed the interaction between environmental factors and eutrophication. The results indicated that (1) the seasonal variation of eutrophication showed an obvious trend of spring > summer > autumn > winter, and the concentration of Chl-a in the inlet was significantly higher than that in the outlet; (2) The inlet, center, and outlet of Ulansuhai Lake are satisfactorily affected by HEA in the best suited method. The fitting coefficients (R2) of the optimal models were 0.58, 0.59, and 0.62 for the three monitoring stations, and the root mean square errors (RMSE) were 3.89, 3.21, and 3.56, respectively; (3) under certain range and threshold conditions, Chl-a increased with the increase of permanganate index, water temperature, dissolved oxygen concentration, and ammonia nitrogen concentration, but decreased with the increase of water depth, Secchi disk depth, pH, and fluoride concentration. The results indicate that the HEA can simulate and predict the dynamics of Chl-a, and identify and quantify the relationships between eutrophication and the threshold data. The research results provide theoretical basis and technical support for the prediction and have great significance for the improvement of water quality and environmental protection in arid and semi-arid inland lakes.

Funder

National Natural Science Foundation of China

Science and Technology Major Project of Inner Mongolia

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3