Isotherm and kinetic studies for the adsorption of methylene blue onto a novel Mn3O4-Bi2O3 composite and their antifungal performance

Author:

Al-Saeedi Sameerah I.,Areej Asfa,Qamar Muhammad Tariq,Alhujaily Ahmad,Iqbal Shahid,Alotaibi Mohammed T.,Aslam Muhammad,Qayyum Muhammad Abdul,Bahadur Ali,Awwad Nasser S.,Jazaa Yosef,Elkaeed Eslam B.

Abstract

Metal oxide-based adsorbents are quite in for wastewater treatment because of their selectivity, stable structure and very low solubility in aqueous systems. To explore the adsorption of methylene blue (MB), Mn3O4-Bi2O3 adsorbents were made using a wet-impregnation technique with various concentrations of Mn3O4. The presence of Mn3O4 contents on the surface of monoclinic Bi2O3 was confirmed through representative scanning electron micrographs. The diffractions pertaining to cubic Mn3O4 and monoclinic Bi2O3 were noticed in the XRD pattern of 5% Mn3O4-Bi2O3 which confirm the composite nature of the adsorbent. XPS analysis revealed the existance of Bi 4f, Bi 4d, Bi 4p, Bi4s, and Mn 2p core levels in Mn3O4-Bi2O3. The adsorption study divulged highest efficiency (∼95% and qe = ∼1.4 mgg-1) of 5% Mn3O4-Bi2O3 composite among other contestants in removing 30 ppm MB at 28 ° C, pH 7 and 250 rpm. In addition to the determination of adsorption ability, the effect of preliminary dye concentration (5, 10, 20, and 30 ppm) and contact time (0.5–6 h) on the removal efficiency of prepared adsorbents were also monitored. The adsorption data from the batch experiments were evaluated using the Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich-Kaganer (DRK) adsorption isotherms and pseudo 1st and 2nd-order kinetic models. The fitting of adsorption isotherms and kinetic models revealed the formation of adsorbate’s monolayer on the surface of adsorbents through the process of chemisorption. Through FTIR measurement, the MB adsorption onto the effective adsorbent (5% Mn3O4-Bi2O3) was also confirmed. Moreover, TGA analysis showed ∼1.5% weight loss by 5% Mn3O4-Bi2O3 before MB adsorption whereas ∼2.6% weight loss was noticed after dye adsorption onto the adsorbent. The antifungal activity was evaluated against the fungi A. solani and M. fructicola using the agar well diffusion technique. The 5% Mn3O4-Bi2O3 composites have exceptional antifungal characteristics compared to Bi2O3 and Mn3O4, with zone inhibition values of 58.6 and 53.9 mm, respectively.

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3