Analysis of factors influencing spatiotemporal differentiation of the NDVI in the upper and middle reaches of the Yellow River from 2000 to 2020

Author:

Gao Siqi,Dong Guotao,Jiang Xiaohui,Nie Tong,Guo Xinwei

Abstract

Surface vegetation represents a link between the atmosphere, water, and human society. The quality of the ecological environment in the upper and middle reaches of the Yellow River (UMRYR) has a direct impact on the downstream basin. However, only few studies have investigated vegetation changes in the UMRYR. Therefore, we used the coefficient of variation and linear regression analyses to investigate spatiotemporal variations in the normalized difference vegetation index (NDVI). Further, we used the geographical detector model (GDM) to determine the spatial heterogeneity of the NDVI and its driving factors and then investigated the factors driving the spatial distribution of the NDVI in different climatic zones and vegetation types. The results showed that the NDVI in the UMRYR was high during the study period. The NDVI was distributed in a spatially heterogeneous manner, and it decreased from the southeast to the northwest. We observed severe degradation in the southeast, mild degradation in the northwest and the Yellow River source region, and substantial vegetation recovery in the central basin. Precipitation and vegetation type drove the spatial distribution of the NDVI. Natural factors had higher influence than that of anthropogenic factors, but the interactions between the natural and anthropogenic factors exhibited non-linear and bivariate enhancements. Inter-annual variations in precipitation were the main natural factor influencing inter-annual NDVI variations, while precipitation and anthropogenic ecological restoration projects jointly drove NDVI changes in the UMRYR. This study provides a better understanding of the current status of the NDVI and mechanisms driving vegetation restoration in the UMRYR.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3