Nitrogen addition enhances terrestrial phosphorous retention in grassland mesocosms

Author:

Esch Ellen,MacDougall Andrew S.

Abstract

Nitrogen (N) and phosphorus (P) are fundamental for plant biomass production in grasslands, are often co-limiting, and have become major freshwater pollutants. By factorially applying gradients of N and P to field-based grassland mesocosms, we tested for saturating thresholds of plant uptake as nutrients increase and whether simultaneous and potentially additive growing-season demand reduces flows of dissolved nutrients to subsurface leachate. We quantified the seasonality of nutrient losses, differences in uptake by functional group (grasses, forbs), the impacts of increasing nutrients on root:shoot ratios, and contrasted vegetated and unvegetated treatments to isolate edaphic influences. Overall, most added nutrients were retained by plants and soil–80% for N and 99% for P. Co-limitation dynamics were powerful but asymmetrical with N additions reducing P in leachate, but P having little influence on N. N retention was primarily influenced by season—most N was lost prior to peak biomass when plant demand was presumably lower. Nutrients reduced root:shoot ratios by increasing foliage but with no detectable effect on retention, possible because root biomass remained unchanged. Similarly, there was no impact of functional group on nutrient loss. Despite substantial plant uptake, leachate concentrations of N and P still exceeded regional levels for safe drinking water and prevention of algal blooms. This work reveals how nutrient co-limitation can accelerate the capture of P by N in grasslands, indicating that plant uptake can significantly reduce dissolved subsurface nutrients. However, the offseason flows of N and the failure to meet regional water-quality standards despite capture levels as high as 99% reveal that vegetative-based solutions to nutrient capture by grasslands are important but likely insufficient without complimentary measures that reduce inputs.

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3