Ciliates in man-made mountain reservoirs

Author:

Sommer Fabian,Sonntag Bettina,Rastl Nikolai,Summerer Monika,Tartarotti Barbara

Abstract

Climate warming has multiple effects on an environment. Especially the Alpine region is affected by changing conditions, which do not only have ecological but also economic impacts in respect to winter sports tourism. Due to higher environmental temperatures and less precipitation, artificial snow making is becoming increasingly important and consequently, mountain reservoirs for water storage are built. In these systems, planktonic communities are not only influenced by the naturally harsh environmental conditions of the alpine region, but also by severe changes in water level fluctuations due to water withdrawal and re-filling within short time periods. Information on planktonic communities and species traits in such man-made water bodies is nonexistent. Here, we focused on ciliates, a group of unicellular protists known to adapt and respond rapidly to changing environmental conditions. Simultaneously, we identified abiotic and other biotic factors that shaped these microbial communities. We investigated the species composition, abundance and species traits of ciliates in eleven mountain reservoirs in the Tyrolean Alps, Austria, and hypothesized that these communities differed significantly from natural ones. The mountain reservoirs were investigated twice during the ice-free season and water chemistry, chlorophyll a, bacteria, zooplankton, and ciliates were sampled. We detected 48 ciliate taxa in total, with an average of five taxa per mountain reservoir. A wide range of abundance (summer: 24 to >15,600 Ind L−1; autumn: 38 to ∼7,500 Ind L−1) and no clear pattern in the community composition was found, most likely due to water level fluctuations and the source of water used for filling the mountain reservoirs. The ciliate abundance was significantly affected by pH, nutrients, but also water transparency and potential predators (crustaceans). Planktonic ciliates dominated the mountain reservoirs and, surprisingly, mixotrophic species, typically found in natural (alpine) lakes, were only rarely observed. Our data suggest that in these fast-changing systems, local factors seem to be more important than regional ones.

Funder

Austrian Science Fund

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3