Influence of multilayer cloud characteristics on cloud retrieval and estimation of surface downward shortwave radiation

Author:

Ri Ana,Ma Run,Shang Huazhe,Xu Jian,Tana Gegen,Shi Chong,He Jie,Bao Yuhai,Chen Liangfu,Letu Husi

Abstract

Abstract: There are significant uncertainties in the retrieval accuracy of multilayer clouds with different phase states, leading to bias in the subsequent estimation of the surface downward shortwave radiation (DSR). Single-layer clouds are generally assumed for the retrieval of cloud optical and microphysical properties from satellite measurements, although multilayer clouds often occur in reality. In this article, the impact of multilayer clouds (thin ice clouds overlying lower-level water clouds) on the retrieval of cloud microphysical properties is simulated with the radiative transfer model RSTAR. The simulated results demonstrate the impact of double-layer clouds on the accuracy of retrieval of the cloud parameters and estimation of DSR. To understand the uncertainties of the input parameters, thorough sensitivity tests are simulated by RSTAR in the Results section. As compared with the retrieval results of single-layer clouds when the ice particle model of the upper-layer cloud is assumed to be ellipsoidal, the maximum relative bias in DSR is 0.63% when the COT for the ice cloud is 1.2 and for water cloud is 32.45. When the upper-layer ice cloud is assumed to be a hexagonal column, the maximum relative bias in DSR is 55.34% when the COT for the ice cloud is 2 and for the water cloud is 58.4. In addition, relative bias in DSR tends to increase both with radiance and ice cloud COT for a given radiance. This finding can provide a basis of reference for the estimation accuracy of radiative forcing in the IPCC report and the subsequent enhancement and improvement of retrieval algorithms.

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3