Retrieve of total suspended matter in typical lakes in China based on broad bandwidth satellite data: Random forest model with Forel-Ule Index

Author:

Zhai Mingjian,Zhou Xiang,Tao Zui,Lv Tingting,Zhang Hongming,Li Ruoxi,Huang Yuxuan

Abstract

Total Suspended Matter is the core parameter of water color remote sensing and the important indicator for water quality evaluation of lakes. Rapid and high-precision monitoring of TSM is an important guarantee for water quality remote-sensing applications. China has launched many broad-bandwidth remote sensing satellites, all of which have similar bandwidth. The coordinated observation of multiple satellites can effectively meet the large-scale and high-frequency dynamic monitoring requirements of TSM concentration in lakes. This study proposed a machine-learning model to retrieve the TSM concentration from broad bandwidth satellites. The reliability and accuracy of various retrieve models (i.e., linear regression model, support vector regression model, random forest model, and back propagation neural networks model) were evaluated through the in-situ datasets of TSM concentration in lakes. The RF model was selected as the retrieved model of TSM concentration using broad bandwidth satellites. The results showed that 1) Compared with four machine learning models, the RF model can provide better performance (R2=0.88, Mean Absolute Percentage Error (MAPE) = 22.5%). Similarly, compared with the documented six TSM retrieve model, the RF retrieve model also has substantial advantages. 2) the Forel-Ule Index (FUI) can effectively enhance the precision and accuracy of the TSM retrieve model. 3) The RF model has good generalization ability and accuracy in the validation datasets (Lake Chagan: MAPE = 3.7%, Lake Changdang: MAPE = 4.3%). 4) The RF model was applied to the broad bandwidth satellites retrieve of TSM concentrations in Lake Bosten, Lake Chagan, and Lake Changdang, and the MAPEs were 5.3%, 8.1%, and 12.1%, respectively. This study showed that the RF model could effectively improve the retrieve performance and generalization ability of the broad bandwidth satellite’s TSM concentration, which meets the accuracy requirements of high-frequency dynamic monitoring of TSM concentration.

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3