Runoff regulation and nitrogen and phosphorus removal performance of a bioretention substrate with HDTMA-modified zeolite

Author:

Qin Yifeng,Chen Mingshen,Liu Shuchang,Fang Yunqing,Li Xudong,Qiu Jiangpin

Abstract

As a commonly used material in bioretention substrates, natural zeolite (NZ) provides decent adsorption capacity for cation pollutants and heavy metals, but limited ability to remove anion pollutants. Hexadecyltrimethylammonium bromide (HDTMA)-modified zeolite (MZ) was used as the bioretention substrate material. The performance of the media including runoff reduction, nitrate nitrogen (NO3-N) removal, ammonium nitrogen (NH4+-N) removal, and total phosphorus (TP) removal was assessed by the column experiment. The effects of different levels of modification, ratio of zeolite in the substrate, and rainfall intensity on media performance were investigated. The results indicate that HDTMA-modified zeolite significantly improves the NO3-N (up to 38.2 times of NZ) and TP (up to17.5 times of NZ) removal rate of media and slightly increases the NH4+-N (up to 1.5 times of NZ) purification performance of the substrate. Compared with the media with NZ, decline on both runoff volume reduction (maximum decline up to 32.9%) and flow rate reduction (maximum decline up to 29.9%) of the media with MZ were observed. Based on multiple regression analysis, quantitative relationship models between influencing factors and response variables were established (R2 > 0.793), the level of the effect of influencing factors on response variables was investigated, and the interactions between influencing factors were explored. The main effect analysis found that the degree of modification affects NO3-N and TP removal rate of the substrate the most, and when the amount of HDTMA molecules loaded on the zeolite surface exceeds 0.09meq/g, the modification can no longer improve NO3-N removal efficiency.

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3