Heavy metal pollution characteristics and potential ecological risk assessment of soils around three typical antimony mining areas and watersheds in China

Author:

Qi Yanting,Wei Xiangdong,Zhao MengJie,Pan Weisong,Jiang Chao,Wu Jinbiao,Li WaiChin

Abstract

China is the largest antimony resource globally. The mining and smelting of antimony will inevitably have a significant impact on the surrounding and downstream farmlands of the mining area, Therefore, it is necessary to understand the pollution characteristics of antimony and evaluate its potential environmental risks. In this paper, three typical antimony mining areas were used as research districts to analyze the contents of heavy metals in soils of the mining areas and watersheds. The single-factor pollution index method, Nemerow comprehensive pollution index method, geo-accumulation index method, and potential ecological risk index method were used to comprehensively evaluate the pollution status and ecological risk of heavy metals in soils around the mining areas. The soil around the Lengshuijiang tin mine was polluted by As, Cd, Zn, and Sb, it was a heavily polluted soil and at a high ecological risk level. The arable soil around the Nandan tea mountain antimony mine was polluted by As, Cd, Cu, Pb, Sb, and Zn, and it was a heavily polluted soil with very high ecological risk level. The soil around the Xunyang antimony mine was mainly polluted by Sb and it was a moderately polluted soil with moderate ecological risk level. The results revealed that the overall soil heavy metal levels in the Lengshuijiang mining area and the Nandan mining area were in a high-risk state, most likely due to the mining and smelting of metal ores and the weathering of mineralised rocks. showing a high-potential ecological risk in these mining areas. We expect to provide a scientific basis for the safe utilization of farmland and pollution control around the antimony mining areas and watersheds in China.

Funder

National Key Research and Development Program of China

Key Project of Research and Development Plan of Hunan Province

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3