“Omics” Technologies for the Study of Soil Carbon Stabilization: A Review

Author:

Overy David P.,Bell Madison A.,Habtewold Jemaneh,Helgason Bobbi L.,Gregorich Edward G.

Abstract

Evidence-based decisions governing sustainable agricultural land management practices require a mechanistic understanding of soil organic matter (SOM) transformations and stabilization of carbon in soil. Large amounts of carbon from organic fertilizers, root exudates, and crop residues are input into agricultural soils. Microbes then catalyze soil biogeochemical processes including carbon extracellular transformation, mineralization, and assimilation of resources that are later returned to the soil as metabolites and necromass. A systems biology approach for a holistic study of the transformation of carbon inputs into stable SOM requires the use of soil “omics” platforms (metagenomics, metatranscriptomics, metaproteomics, and metabolomics). Linking the data derived from these various platforms will enhance our knowledge of structure and function of the microbial communities involved in soil carbon cycling and stabilization. In this review, we discuss the application, potential, and suitability of different “omics” approaches (independently and in combination) for elucidating processes involved in the transformation of stable carbon in soil. We highlight biases associated with these approaches including limitations of the methods, experimental design, and soil sampling, as well as those associated with data analysis and interpretation.

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3