Combined Wavelet Transform With Long Short-Term Memory Neural Network for Water Table Depth Prediction in Baoding City, North China Plain

Author:

Liang Zehua,Liu Yaping,Hu Hongchang,Li Haoqian,Ma Yuqing,Khan Mohd Yawar Ali

Abstract

Accurate estimation of water table depth dynamics is essential for water resource management, especially in areas where groundwater is overexploited. In recent years, as a data-driven model, artificial neural networks (NNs) have been widely used in hydrological modeling. However, due to the non-stationarity of water table depth data, the performance of NNs in areas of over-exploitation is challenging. Therefore, reducing data noise is an essential step before simulating the water table depth. This research proposed a novel method to model the non-stationary time series data of water table depth through combing the advantages of wavelet analysis and Long Short-Term Memory (LSTM) neural network (NN). A typical groundwater over-exploitation area, Baoding, North China Plain (NCP), was selected as a study area. To reflect the impact of anthropogenic activities, the variables harnessed to develop the model includes temperature, precipitation, evaporation, and some socio-economic data. The results show that decomposing the time series of the water table depth into three sub-temporal components by Meyer wavelets can significantly improve the simulation effect of LSTM on the water table depth. The average NSE (Nash-Sutcliffe efficiency coefficient) value of all the sites increased from 0.432 to 0.819. Additionally, a feedforward neural network (FNN) is used to compare forecasts over 12-months. As expected, wavelet-LSTM outperforms wavelet-FNN. As the prediction time increases, the advantages of wavelet-LSTM become more evident. The wavelet-LSTM is satisfactory for forecasting the water table depth at most in 6 months. Furthermore, the importance of input variables of wavelet-LSTM is analysed by the weights of the model. The results indicate that anthropogenic activities influence the water table depth significantly, especially in the sites close to the Baiyangdian Lake, the largest lake in the North China Plain. This study demonstrates that the wavelet-LSTM model provides an option for water table depth simulation and predicting areas of over-exploitation of groundwater.

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3