Characterization of the Soil Prokaryotic Community With Respect to Time and Fertilization With Animal Waste–Based Digestate in a Humid Continental Climate

Author:

Suproniene Skaidre,Doyeni Modupe Olufemi,Viti Carlo,Tilvikiene Vita,Pini Francesco

Abstract

There is a renewed global awareness to improve soil health through the intensification and management of organic inputs such as the application of animal waste–based digestate and other types of organic fertilizers to the soil. The objective of this study was to evaluate the influence of different types of animal waste–based digestate application on soil prokaryotic diversity and composition in an agricultural cropping system over a period of 3 years, cultivated with three different annual cereal crops (spring wheat, triticale, and barley). Treatments were laid out in a randomized design with five conditions (three replicates per condition): fertilizer treatments included three different types of digestate (pig manure, chicken manure, and cow manure digestates), synthetic mineral nitrogen, and unfertilized control. Prokaryotic soil communities were characterized by Illumina MiSeq sequencing. The three most abundant phyla identified were Actinobacteria, Acidobacteria, and Proteobacteria, which accounted for over 55% of the total prokaryotic community. Other phylogenetic groups such as Verrucomicrobia and Bacteroidetes were also identified as part of the native soil microbiota. It was observed that the period of digestate application did not significantly influence the prokaryotic diversity in the soil. On the contrary, sampling time was a major factor in driving β-diversity. A correlation with soil pH was also observed for several taxonomic groups, indicating its importance in shaping prokaryotic community composition. Our study showed that the richness and diversity of the soil prokaryotic community were not affected by digestate application, while other factors such as the yearly crop varieties and seasonal/climate changes were the major contributors to differentiating the prokaryotic community composition over time.

Funder

Lietuvos Mokslo Taryba

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3