Characteristics of the soil arbuscular mycorrhizal fungal community along succession stages in tropical forest and its driving factors

Author:

Mai Siwei,Mao Han,Jiang Yamin,Huang Ting,Yang Qiu,Xing Guitong,Wang Xiaofang,Yang Huai,Liu Wenjie

Abstract

Arbuscular mycorrhizal fungi play an important role in mediating plant-soil interactions across succession stages. However, AMF community dynamics which about the change of community composition and member activity remain unclear. To complete the gap knowledge about microbial community dynamics during restoration succession, soil AMF community composition was studied within a tropical forest ecosystem in the Ganshiling nature reserve using high throughput sequencing methods. The results revealed that soil AMF communities characteristics about speices diversity, species composition and microbial correlation network showed significant differences between shrubland (SC) and secondary forest ecosystems, but the same differences were not found between 40-year recovery secondary forest (SF40) and 60-year recovery secondary forest (SF60). Plant community dynamics were the key factor for regulating soil AMF communities among succession stages. An important biotic factor explaining variance in AMF community composition was root biomass. The correlation network analysis showed that although the nodes were similar among succession stages, the complexity of networks was significant higher in SF40 than in SC and SF60, suggesting that AMF communities were more active in SF40, which verified the hypothesis of intermediate disturbance hypothesis. This study provides new insights into AMF community dynamics and their driving factors across succession stages, as well as expanding knowledge of the ecological value of AMF for tropical forest restoration processes.

Funder

International Centre for Bamboo and Rattan

China Postdoctoral Science Foundation

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3