Detection of oil spills based on gray level co-occurrence matrix and support vector machine

Author:

Li Kai,Yu Hongliang,Xu Yiqun,Luo Xiaoqing

Abstract

Accurate reconnaissance of Marine oil spill is very important for emergency management of Marine oil spill accidents. Unmanned aerial vehicles (UAV) is a suitable carrier for offshore oil spill reconnaissance because of its fast deployment speed and low cost. Aiming at the identification accuracy of small oil spill accident in offshore port area and the problem of day and night reconnaissance, this study takes thermal infrared remote sensing images of oil leakage captured by UAV as the research object and proposes an oil spill detection method based on a Gray Level Co-occurrence Matrix (GLCM) and Support Vector Machine (SVM) method. Firstly, the extraction steps of image GLCM feature and the basic principle of SVM classification are studied. Then, the thermal infrared image data collected by UAV is preprocessed, including image filtering, clipping and rotation, and the sample database is generated. Subsequently, GLCM features of the samples were extracted, and the energy and correlation in GLCM were selected as classification features and sent to the SVM classifier to complete the oil spill detection of real-time thermal infrared images. The experimental results show that, compared with Classification and Regression Tree algorithm (CART) and Random Forests of Decision Trees (RF) algorithm, the detection accuracy of the method proposed in this paper reaches 95%, which were 10 and 2 percentage points higher than them respectively. The proposed method in this paper has fast recognition speed and high accuracy, and can provide all-weather recognition of oil spills for the detection of small oil spills in the offshore port area.

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3