Oil disturbance reduces infaunal family richness but does not affect phylogenetic diversity

Author:

Kiskaddon Erin,Gadeken Kara,Berke Sarah K.,Bell Susan,Moore Jenna M.,Dorgan Kelly M.

Abstract

Infaunal organisms are susceptible to disturbances such as hypoxia and sediment contamination; changes in infaunal community structure are therefore often used as indicators of anthropogenic disturbance. Susceptibility to disturbance varies across taxa, either due to physiological factors or to behaviors or functional roles that increase exposure. Both sources of variability are likely to be heritable and shared among related taxa. Thus, we would expect oil disturbance to disproportionately affect related taxa and therefore decrease phylogenetic diversity (PD). We test this hypothesis for a shallow water marine infaunal community using a simulation approach that iteratively removes clades with shared vulnerability to oil exposure. Infauna were sampled at two sites in the Chandeleur Islands, LA, that reflect different exposures to crude oil after the Deepwater Horizon event. Seagrass and adjacent bare sediment habitats were sampled in 2015, 5 years after initial oil exposure, and again in 2016 after an acute re-oiling event. We found that strong correlation between PD and family richness masked any detectable PD patterns with oil exposure. For our full community tree, sensitivity analysis indicated that the removal of larger clades did not disproportionately reduce PD, against our prediction. For this pair of sites, PD did not provide a better metric for assessing the impacts of oil exposure than family richness alone. It is possible, however, that finer-scale taxonomic resolution of infaunal communities may better decouple PD from taxonomic richness. More work is needed to fully evaluate the impacts of disturbance on PD.

Funder

Gulf of Mexico Research Initiative

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3