Main influencing factors of terrestrial evapotranspiration for different land cover types over the Tibetan Plateau in 1982–2014

Author:

Li Xia,Pan Yongjie,Zhao Cailing

Abstract

Introduction: Terrestrial evapotranspiration (ET) over the Tibetan Plateau (TP) has important implications for the global water cycle, climate change, and ecosystem, and its changes and driving factors have drawn increasing attention. Previous research studies have minimally quantified the effects and identified the pathways of the influencing factors on ET over different land surface types.Methods: In this study, we analyze the spatiotemporal distribution and variation of ET over the TP in 1982–2014 based on multiple datasets. Furthermore, the effects of each influencing factor on ET are quantified over different land surface types, and the major influencing factors and their affecting pathways are identified using structure equation modeling (SEM), which is a statistical method used to analyze relationships among multiple variables.Results: The results show that the climatology of ET decreases gradually from southeastern to northwestern TP, with the maximum spatial averaged value of 379.979 ± 0.417 mm a−1 for the fifth generation of European Reanalysis (ERA5) and the minimum of 249.899 ± 0.469 mm a−1 for the Global Land Data Assimilation System (GLDAS). The most significant differences among the ET datasets mainly occur in the summer. The annual ET averaged over the TP presents an increased trend from 1982 to 2014, as shown by all of the ET datasets. However, there are larger discrepancies in the spatial distribution of the increased trend for these datasets. The assessment result shows that the 0.05° land evapotranspiration dataset for the Qinghai–Tibet Plateau (LEDQTP) has the highest temporal correlation coefficient (0.80) and the smallest root-mean-square error (23.50 mm) compared to the observations. Based on LEDQTP, we find that precipitation is the main influencing factor of ET, which primarily affects ET through direct pathways in bare soil and grassland regions, with standardized estimates of 0.521 and 0.606, respectively. However, in meadow and shrub and forest regions, the primary factor influencing ET is air temperature, which is primarily affected by an indirect pathway through a vapor pressure deficit. Air temperature is also the controlling factor in sparse vegetation regions, but it affects ET through a direct pathway.Discussion: This study may provide some new useful information on the effects of climate change on ET in different land cover types over the TP.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3