The importance of natural land carbon sinks in modelling future emissions pathways and assessing individual country progress towards net-zero emissions targets

Author:

van der Ploeg Robin,Haigh Martin

Abstract

Nature-based solutions (NBS), in the form of active ecosystem conservation, restoration and improved land management, represent a pathway to accelerate net-zero emissions (NZE) strategies and support biodiversity. Meaningful implementation and successful accounting depend on the ability to differentiate between anthropogenic and natural carbon fluxes on land. The United Nations Framework Convention on Climate Change (UNFCCC) land carbon accounting methods currently incorporate all CO2 fluxes on managed land in country inventories without distinguishing between anthropogenic and natural components. Meanwhile, natural land carbon sinks are modelled by earth system models but are mostly reported at global level. Here we present a simple yet novel methodology to estimate the present and future progression of natural land sinks at the country and regional level. Forests dominate the uptake of CO2 on land and as such, our analysis is based on allocating global projections of the natural land carbon flux to individual countries using a compilation of forest land areas for a historic and scenario range spanning 1960–2100. Specifically, we use MIT’s carbon cycle model simulations that are set in the context of emissions pathways from the Shell Energy Security Scenarios (2023). Our natural land carbon flux estimates for individual countries and regions such as the European Union (EU) show generally good agreement with independent estimates from recent land-use harmonisation studies for 2000–2020. Hence, our approach may also provide a simple, first-order exploration of future natural land fluxes at country level—a potential that other studies do not yet offer. In turn, this enables better understanding of the anthropogenic and natural components contributing to country NZE targets under different scenarios. Nevertheless, our findings also suggest that models such as the Shell World Energy Model (WEM) would benefit from further improvements in the apportionment of land carbon sources and sinks to evaluate detailed actions to meet country targets. More importantly, uncertainties remain regarding the resilience of land ecosystems and their capacity to store increasing amounts of carbon under progressive global warming. Therefore, we recommend that the carbon cycle modelling and energy modelling research communities continue to collaborate to develop a next generation of relevant data products to distinguish anthropogenic from natural impacts at local, regional and national levels.

Publisher

Frontiers Media SA

Reference53 articles.

1. Net zero: science, origins, and implications;Allen;Annu. Rev. Environ. Resour.,2022

2. Carbon cycling in mature and regrowth forests globally;Anderson-Teixeira;Environ. Res. Lett.,2021

3. Exceeding 1.5°C global warming could trigger multiple climate tipping points;Armstrong McKay;Science,2022

4. Global carbon and other biogeochemical cycles and feedbacks;Canadell,2021

5. Reconciling carbon-cycle concepts, terminology, and methods;Chapin;Ecosystems,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3