Why is Lake Urmia Drying up? Prognostic Modeling With Land-Use Data and Artificial Neural Network

Author:

Rahimi Akbar,Breuste Jürgen

Abstract

Lake Urmia (LU) is considered as the largest salt water lake in Iran and has severe restrictions on water resources and becoming a salt lake increasingly. The LU drought will Couse ecological, health, social and economic problems. Land-use change and the increasing of salt areas evaluated in this work using satellite imagery. We evaluated the present situation and changes of the lake area in the past and further changes until 2025. The results indicated that from 1987 to 2000, the process of change has slowed down and less than 2% of the lake’s water area was reduced, and from 2000 to 2010, these shrinking processes were faster and more than 28% of the lake water area disappeared. The intensity of the shrinking from 2010 to 2014 is very severe. Using the Land Transformation Model, the continuation of the changes was modeled until 2025. The results of the modeling indicate the conversion of the water lake to salt lake in this period, and in the north part, the shallow waters occupy 0.7% of the total lake area. The result shows that climate change was not the significant factors for drying up of the lake but human factors such as building dams to store water for irrigation, increasing groundwater use by established deeper wells for agricultural irrigation were the important factors for drying. With changing of management of the waters leading to the lake and the transfer of new water resources to the lake between 2014 and 2016, the area of the lake increased to a double. It was evident that by proper planning and managing of water resources, the lake’s restoration can be achieved.

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3