Microtopographic reconstruction improves soil erosion resistance and vegetation characteristics on the slopes of large dump sites in semi-arid areas

Author:

Tian Xiumin,Yin Ruiping,Wang Jian,Dong Lei,Cheng Bo,Liu Hu,Ge Nan

Abstract

In view of the management of slopes in large mine dumps in semi-arid regions, this study explored different methods for controlling soil erosion and improving the microenvironment of the surface of such slopes. Focusing on microtopography modifications and vegetation measures on the slopes of a large mine dump in a semi-arid region, the soil erosion resistance of the slope was continuously monitored using installed observation plots. In addition, the characteristics of plant communities that thrived on the dump were investigated. The results indicate that the soil erosion resistance, soil organic matter content, and biodiversity increased to different degrees in the large mine dump that experienced microtopography modifications and implemented vegetation measures compared with those of slopes managed only by soil cover and planting. Compared with that in the control plot, under the same vegetation restoration measures, the macroaggregate content in the four plots that implemented microtopography modifications increased by 20%, 24%, 21%, and 30%; the soil erodibility (K-factor) decreased by 7.8%, 8.5%, 10%, and 10.7%; and the soil organic matter increased by 2%, 4.5%, 3.4%, and 4.7%. Microtopography modification consisting of U-shaped blocking boards and fixed rods embedded in the slope, combined with vegetation measures, resulted in a protective effect, which in turn induced the highest diversity, evenness, and richness index values of 2.35, 0.87, and 1.94, respectively. The study results revealed that a combination of microtopography modifications and vegetation measures can be used to achieve effective vegetation restoration, prevent soil erosion, and create different microhabitats, indicating that our approach is an effective way to control critical issues affecting large mine dumps in semi-arid regions.

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3