Evaluation of Long-Term and High-Resolution Gridded Precipitation and Temperature Products in the Qilian Mountains, Qinghai–Tibet Plateau

Author:

Li Yanzhao,Qin Xiang,Liu Yushuo,Jin Zizhen,Liu Jun,Wang Lihui,Chen Jizu

Abstract

Long-term and high-resolution gridded products of precipitation and temperature data are highly important to study the changes in climate and environment under global warming. Considering the uncertainties of these products in mountainous areas, it is necessary to evaluate the data reliability. This study evaluates the performances of the CMFD (China Meteorological Forcing Dataset) and ERA5-Land in simulating precipitation and temperature in the Qilian Mountains over the period of 1980–2018. We use the observation data of 28 basic meteorological stations in the Qilian Mountains to compare with the reanalysis products. Error metrics (the correlation coefficient (CC), the root mean square error (RMSE), the mean absolute error (MAE), and the relative bias (BIAS)) are used to quantify the monthly differences in existence between the observed data and reanalysis data. Our findings indicate that both CMFD and ERA5-Land could well reproduce the spatial distribution of mean monthly precipitation and temperature in the region. A good correlation is found between CMFD and OBS under different amounts of monthly precipitation conditions. The monthly average temperatures of CMFD and ERA5-Land reveal a high correlation with the observed results. Moreover, the CC values of CMFD and ERA5-Land precipitation products are the highest in autumn and the lowest in winter, and the CC values of both CMFD and ERA5-Land temperature products are higher in spring and autumn. However, we find that both reanalysis products underestimate the temperature to varying degrees, and the amount of precipitation is overestimated by ERA5-Land. The results of the evaluation show that the errors in precipitation yielded by CMFD as a whole are distinctly fewer than those yielded by ERA5-Land, while the errors in air temperature yielded by both ERA5-Land and CMFD are nearly identical to each other. Overall, ERA5-Land is more suitable than CMFD for studying the trends of temperature changes in the Qilian Mountains. As for simulation of precipitation, CMFD performs better in the central and eastern parts of the Qilian Mountains, whereas ERA5-Land performs better in the western part of the Qilian Mountains.

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3