The quantification of mountain base elevation based on mountain structure modeling

Author:

Wenjie Zhang,Mengyang An,Guanhong Chen,Fang Zhao,Yong Cheng,Jiale Tang

Abstract

The mountain base elevation, which refers to the initial altitude of a mountain or the mountain altitudinal belt, is of great significance for the study of mountain altitudinal zonality and the mass elevation effect. However, a fast and efficient algorithm for the automatic extraction of a mountain base elevation is still lacking; therefore, a new method based on mountain structure modeling to calculate the mountain base elevation is proposed for the Qinling-Daba Mountains (QDM). The result shows that 1) the mountain structures in different catchments of the Qinling-Daba Mountains can be divided into six types, namely, pyramid, low-diamond, diamond, inverse pyramid, hourglass, and ellipsoid, and each type has a specific distribution law; 2) based on the mountain structure, the calculation result of the mountain base elevation in the Qinling-Daba Mountains ranges from 99 m to 3,979 m, being high in the west, north, and south and low in the east and middle, which is consistent with the overall terrain distribution of the Qinling-Daba Mountains; and 3) there is a good linear correlation between the mountain base elevation and the average altitude in the Qinling-Daba Mountains with R2 = 0.96 (p < 0.01), which also indicates that the mountain base elevation quantification algorithm works well in the mountain areas with a complex terrain.

Publisher

Frontiers Media SA

Subject

General Environmental Science

Reference28 articles.

1. Global mountain topography and the fate of montane species under climate change;Elsen;Nat. Clim. Chang.,2015

2. A summary of the study on flora and vegetation in Qinling Mountains;Fu;Acta Bot. Boreali-Occidentalia Sin.,1996

3. Interpretation of the ‘massenerhebung’ effect on tropical mountains;Grubb;Nature,1971

4. Mass elevation effect and its forcing on timberline altitude;Han;J. Geogr. Sci.,2012

5. Characterizing the mass elevation effect across the Tibetan plateau;Han;J. Mt. Sci.,2018

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3