Microplastics Increase Soil pH and Decrease Microbial Activities as a Function of Microplastic Shape, Polymer Type, and Exposure Time

Author:

Zhao Tingting,Lozano Yudi M.,Rillig Matthias C.

Abstract

Microplastic pollution is a topic of increasing concern, especially since this issue was first addressed in soils. Results have so far been variable in terms of effects, suggesting that there is substantial context-dependency in microplastic effects in soil. To better define conditions that may affect microplastic-related impacts, we here examined effects as a function of microplastic shape and polymer type, and we tested if effects on soil properties and soil microbial activities change with incubation time. In our laboratory study, we evaluated twelve different secondary microplastics representing four microplastic shapes: fibers, films, foams and fragments; and eight polymer types: polyamide (PA), polycarbonate (PC), polyethylene (PE), polyester (PES), polyethylene terephthalate (PET), polypropylene (PP), polystyrene (PS), and polyurethane (PU). We mixed the microplastics with a sandy soil (0.4% w/w) and incubated at 25°C for 31 days. Then, we collected soil samples on the 3rd, 11th, and 31st day, and measured soil pH, respiration and four enzyme activities (soil enzymatic activities). Our results showed that microplastics could affect soil pH, respiration and enzymatic activities depending on microplastic shape and polymer type, effects that were altered with incubation time. Soil pH increased with foams and fragments and overall decreased in the first days of incubation and then increased. Soil respiration increased with PE foams and was affected by the incubation time, declining over time. Overall, acid phosphatase activity was not affected by shape or polymer type. β-D-glucosidase activity decreased with foams, cellobiosidase activity decreased with fibers, films and foams while N-acetyl-β-glucosaminidase activities decreased with fibers and fragments. Enzymatic activities fluctuated during the incubation time, except N-acetyl-β-glucosaminidase, which showed a declining trend with incubation time. Enzymatic activities were negatively correlated with soil pH and this relationship was less strong when microplastics were added to the soil. Our study adds to the evidence that research should embrace the complexity and diversity of microplastics, highlighting the role of microplastic shape and polymer type in influencing effects; additionally, we show that incubation time is also a parameter to consider, as effects are dynamic even in the short term.

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3