Reducing agricultural nitrogen use: A price endogenous partial equilibrium analysis in the Yangtze River Basin, China

Author:

Yu S.,Fan S.,Ti C.,Ma Y.

Abstract

The overuse of nitrogen fertilizers in agricultural production in China, resulting in negative impacts on the environment, has become a serious issue. Thus, reducing agricultural nitrogen use has become one of the top priorities for achieving the sustainable development goals of the Chinese agricultural sector. Searching for effective approaches to reduce nitrogen use is essential to agricultural and environmental sustainability. In this study, we selected the Yangtze River Basin as the research area, owing to its critical role in Chinese agricultural production, and established a price endogenous partial equilibrium model to simulate the effect of nitrogen use reduction from nitrogen use optimization (NUO) and nitrogen use efficiency improvement (NUE+). Based on agricultural datasets in 2019, simulation results revealed that 1) NUO helped reduce nitrogen use and nitrogen loss by 6.99% and 7.50%, respectively; if changes in the acreage are considered, then the reduction effect will be less significant; 2) nitrogen use decreased continuously with NUE+, and the reduction rate was 7.85%, 15.38%, 22.65%, and 28.02% under the NUE+10%, NUE+20%, NUE+30%, and NUE+40% scenarios, respectively, and nitrogen loss was highly sensitive; and 3) the crop heterogeneity indicated that cereals are regarded as nitrogen-overuse crops and more sensitive to nitrogen use reduction under the NUE+ scenarios than oil crops. Accordingly, in this study, we suggested that practical NUO and NUE+ policies and incentives are necessary, and flexible adjustment strategies for crop-planting structures, such as enlarging the acreage for cereals, may be useful in reducing nitrogen use in the Yangtze River Basin.

Funder

National Natural Science Foundation of China

Zhejiang Sci-Tech University

Publisher

Frontiers Media SA

Subject

General Environmental Science

Reference29 articles.

1. U.S. Agricultural and forestry impacts of the energy independence and security act: FASOM results and model description BeachR. McCarlB. A. 2010

2. Producing more grain with lower environmental costs;Chen;Nature,2014

3. Modeling agricultural supply response using mathematical programming and crop mixes;Chen;Am. J. Agric. Econ.,2012

4. Pursuing sustainable productivity with millions of smallholder farmers;Cui;Nature,2018

5. Nitrogen use efficiencies in Chinese agricultural systems and implications for food security and environmental protection;Gu;Reg. Environ. Change,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3