Boosted Regression Tree Algorithm for the Reconstruction of GRACE-Based Terrestrial Water Storage Anomalies in the Yangtze River Basin

Author:

Dannouf Ramia,Yong Bin,Ndehedehe Christopher E.,Correa Fabio M.,Ferreira Vagner

Abstract

The terrestrial water storage anomaly (TWSA) from the previous Gravity Recovery and Climate Experiment (GRACE) covers a relatively short period (15 years) with several missing periods. This study explores the boosted regression trees (BRT) and the artificial neural network (ANN) to reconstruct the TWSA series between 1982 and 2014 over the Yangtze River basin (YRB). Both algorithms are trained with several hydro-climatic variables (e.g., precipitation, soil moisture, and temperature) and climate indices for the YRB. The results from this study show that the BRT is capable of reconstructing TWSA and shows Nash–Sutcliffe efficiency (NSE) of 0.89 and a root-mean-square error (RMSE) of 18.94 mm during the test stage, outperforming ANN in about 2.3% and 7.4%, respectively. As a step further, the reliability of this technique in reconstructing TWSA beyond the GRACE era was also evaluated. Hence, a closed-loop simulation using the artificial TWSA series over 1982–2014 under the same scenarios for the actual GRACE data shows that BRT can predict TWSA (NSE of 0.92 and RMSE of 6.93 mm). Again, the BRT outperformed the ANN by approximately 1.1% and 5.3%, respectively. This study provides a new perspective for reconstructing and filling the gaps in the GRACE–TWSA series over data-scarce regions, which is desired for hydrological drought characterization and environmental studies. BRT offers such an opportunity for the GRACE Follow-On mission to predict 11 months of missing TWSA data by relying on a limited number of predictive variables, hence being adjudged to be more economical than the ANN.

Funder

National Key Research and Development Program of China

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3